Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-18 15:57:35 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7fee8c246710>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-18 15:57:35 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-18 15:57:35 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-18 15:57:35 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
1 vAoSeClOK82a0000 None True Intestine IgD IgE IgD IgG4 IgM intestine. None None notebook None None None None None 2024-10-18 15:57:39.039398+00:00 1
4 UfHraK45LfVl0000 None True Intestine intestinal Platelets visualize. None None notebook None None None None None 2024-10-18 15:57:39.039653+00:00 1
5 CdPQUHNQ85IS0000 None True Cajal–Retzius Cells intestine Type II Pneumocy... None None notebook None None None None None 2024-10-18 15:57:39.039717+00:00 1
11 3YjHRSwwWkWp0000 None True Head Direction Cells Dendritic cell IgE intest... None None notebook None None None None None 2024-10-18 15:57:39.040098+00:00 1
20 ZGjDZsp7wzkt0000 None True Head Direction Cells intestine cluster IgE Hea... None None notebook None None None None None 2024-10-18 15:57:39.040669+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
8 DEiUfoUYxySK0000 None True Research IgE Type II Pneumocyte IgE. None None notebook None None None None None 2024-10-18 15:57:39.039907+00:00 1
13 EiHp0fQi55v30000 None True Igg4 IgM candidate IgG1 Spleen IgG research. None None notebook None None None None None 2024-10-18 15:57:39.040225+00:00 1
14 zlMDjkwcX6l30000 None True Research study cluster Cochlea. None None notebook None None None None None 2024-10-18 15:57:39.040289+00:00 1
15 552MZAUyI8J60000 None True Brown Fat Cell IgG4 research Apocrine sweat gl... None None notebook None None None None None 2024-10-18 15:57:39.040353+00:00 1
25 QhHofciJgP7a0000 None True Type Ii Pneumocyte research IgA Head direction... None None notebook None None None None None 2024-10-18 15:57:39.040987+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
8 DEiUfoUYxySK0000 None True Research IgE Type II Pneumocyte IgE. None None notebook None None None None None 2024-10-18 15:57:39.039907+00:00 1
13 EiHp0fQi55v30000 None True Igg4 IgM candidate IgG1 Spleen IgG research. None None notebook None None None None None 2024-10-18 15:57:39.040225+00:00 1
14 zlMDjkwcX6l30000 None True Research study cluster Cochlea. None None notebook None None None None None 2024-10-18 15:57:39.040289+00:00 1
15 552MZAUyI8J60000 None True Brown Fat Cell IgG4 research Apocrine sweat gl... None None notebook None None None None None 2024-10-18 15:57:39.040353+00:00 1
25 QhHofciJgP7a0000 None True Type Ii Pneumocyte research IgA Head direction... None None notebook None None None None None 2024-10-18 15:57:39.040987+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
8 DEiUfoUYxySK0000 None True Research IgE Type II Pneumocyte IgE. None None notebook None None None None None 2024-10-18 15:57:39.039907+00:00 1
14 zlMDjkwcX6l30000 None True Research study cluster Cochlea. None None notebook None None None None None 2024-10-18 15:57:39.040289+00:00 1
107 AZht4wWr0qHz0000 None True Research IgG1 result IgE. None None notebook None None None None None 2024-10-18 15:57:39.049004+00:00 1
267 AfqKAwWADvHS0000 None True Research classify Brown fat cell candidate vis... None None notebook None None None None None 2024-10-18 15:57:39.066103+00:00 1
313 tDZn9YnUHeEL0000 None True Research IgA IgA Apocrine sweat gland IgG3 Bro... None None notebook None None None None None 2024-10-18 15:57:39.068848+00:00 1
423 mED34dlGZV8l0000 None True Research intestinal investigate Transverse col... None None notebook None None None None None 2024-10-18 15:57:39.080407+00:00 1
453 f0rTYL6gycX20000 None True Research IgG2 IgY Transverse colon. None None notebook None None None None None 2024-10-18 15:57:39.082173+00:00 1
455 sFXTvQ1FQkgP0000 None True Research IgE Head direction cells IgM Dendriti... None None notebook None None None None None 2024-10-18 15:57:39.082290+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 CFQFonx3v0qIMSzM0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-18 15:57:37.209451+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 zuUvZW2buP4wfECG0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-18 15:57:37.437003+00:00 1
3 qCa3vZFEJ5DS6vyw0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-18 15:57:37.444112+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries